Differential modulation by copper and zinc of P2X2 and P2X4 receptor function.
نویسندگان
چکیده
Differential Modulation by Copper and Zinc of P2X2 and P2X4 Receptor Function. The modulation by Cu2+ and Zn2+ of P2X2 and P2X4 receptors expressed in Xenopus oocytes was studied with the two-electrode, voltage-clamp technique. In oocytes expressing P2X2 receptors, both Cu2+ and Zn2+, in the concentration range 1-130 microM, reversibly potentiated current activated by submaximal concentrations of ATP. The Cu2+ and Zn2+ concentrations that produced 50% of maximal potentiation (EC50) of current activated by 50 microM ATP were 16.3 +/- 0.9 (SE) microM and 19.6 +/- 1.5 microM, respectively. Cu2+ and Zn2+ potentiation of ATP-activated current was independent of membrane potential between -80 and +20 mV and did not involve a shift in the reversal potential of the current. Like Zn2+, Cu2+ increased the apparent affinity of the receptor for ATP, as evidenced by a parallel shift of the ATP concentration-response curve to the left. However, Cu2+ did not enhance ATP-activated current in the presence of a maximally effective concentration of Zn2+, suggesting a common site or mechanism of action of Cu2+ and Zn2+ on P2X2 receptors. For the P2X4 receptor, Zn2+, from 0.5 to 20 microM enhanced current activated by 5 microM ATP with an EC50 value of 2.4 +/- 0.2 microM. Zn2+ shifted the ATP concentration-response curve to the left in a parallel manner, and potentiation by Zn2+ was voltage independent. By contrast, Cu2+ in a similar concentration range did not affect ATP-activated current in oocytes expressing P2X4 receptors, and Cu2+ did not alter the potentiation of ATP-activated current produced by Zn2+. The results suggest that Cu2+ and Zn2+ differentially modulate the function of P2X2 and P2X4 receptors, perhaps because of differences in a shared site of action on both subunits or the absence of a site for Cu2+ action on the P2X4 receptor.
منابع مشابه
Purinergic receptor expression in neuronal, bladder smooth muscle and urothelial cells: characterization and inhibition by low molecular weight antagonists
.....................................................................................................3 Acknowledgements ...................................................................................4 Publications arising from this thesis .......................................................5 Prologue ...........................................................................................
متن کاملP2X receptor trafficking in neurons is subunit specific.
P2X receptors within the CNS mediate excitatory synaptic transmission and also act presynaptically to modulate neurotransmitter release. We have studied the targeting and trafficking of P2X4 and P2X2 receptors heterologously expressed in cultured olfactory bulb neurons. Homomeric P2X4 receptors had a punctate distribution, and many of the puncta colocalized with early endosomes. In contrast, P2...
متن کاملComparative Analysis of P2X1, P2X2, P2X3, and P2X4 Receptor Subunits in Rat Nodose Ganglion Neurons
Nodose ganglion (NG) neurons are visceral primary sensory neurons. The transmission and regulation of visceral sensation is mediated mainly by the P2X purinoceptor (P2X receptor). Although the characteristics of different P2X receptor subunits in the NG have been studied previously, comprehensive analyses have not been performed. In this study, we used immunohistochemistry, immunocytochemistry,...
متن کاملGo it alone no more--P2X7 joins the society of heteromeric ATP-gated receptor channels.
P2X receptors (P2XR) function as ATP-gated nonselective ion channels permeable to Na+, K+, and Ca2+, and they are expressed in a wide range of excitable, epithelial/endothelial, and immune effector cell types. The channels are trimeric complexes composed of protein subunits encoded by seven different P2XR genes expressed in mammalian and other vertebrate genomes. Current genetic, biochemical, a...
متن کاملInteraction of Purinergic P2X4 and P2X7 Receptor Subunits
P2X4 and P2X7 are members of the P2X receptor family, comprising seven isoforms (P2X1-P2X7) that form homo- and heterotrimeric non-specific cation channels gated by extracellular ATP. P2X4 and P2X7 are widely coexpressed, particularly in secretory epithelial cells and immune and inflammatory cells, and regulate inflammation and nociception. Although functional heteromerization has been establis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 81 5 شماره
صفحات -
تاریخ انتشار 1999